
Halting Problem & Sanskrit Based On-board Supercomputer

"Inception vs perception" problem (solved in Sanskrit grammar), end of 

1850s' black body radiation problem (still unsolved actually) and 1950s'

halting problem are the same.

Halting problem can, in practice, be understood by:

- the failure to avoid queue in parallelism

- the inability of goal-oriented selection using machine learning

This affects quantum computers also.

Details:

The role of black body radiation studies in the end of 1850s drove 

progress in modern physics, due to initial difficulties in explaining 

the observed phenomena.

The Heisenberg Uncertainty Principle, which states that one cannot 

accurately measure both the position and speed of a particle 

simultaneously, has led to conventional quantum theories like the 

(1960s’ version of) “S-matrix bootstrap theory" with still unsolved 

equations.

John Von Neumann, the physicist who made significant contributions to 

computer architecture and programming, offered key insights into the 

Halting Problem.

This problem, along with other aspects of quantum physics (as per Von 

Neumann, Weber, and others), is a part of several open-ended questions—

even relating to consciousness.

Quantum computers aim to address the perfect parallelism from a unique 

perspective, but they also face limitations rooted in this problem.

I offer to summarize the disputed and unproven aspects of quantum 

computers in both theory and application as follows:

1. Hadrons, as self-creating particles, present challenges, and 

conclusions on the data from the Large Hadron Collider (LHC) are 

debatable. Quarks and Gluons do not exist as per different theories and 

the indirect proofs being given for these particles can be explained 

using different theories also, not just the most popular one. 

2. Existing practical applications like laser technology and quantum 

cryptography rely on 'conventional' quantum physics, despite unsolvable 

equations.



My intention of following questions is to stimulate thought and 

encourage contemplation.

Question 1:

I humbly request to see if there is any practical example of a parallel 

program, language, or software/hardware architecture that operates 

efficiently without relying on (algorithmic) queue. The utilization of 

queue imposes limitations on system parallelism and also demonstrates 

shortcomings in the algorithm.

For 1st question, examine these:

Bitcoin's no-queue causing reliability issue; Uber-like apps' billing 

delays due to queuing; Memory limits in queue causing message loss in 

message queues; Databases recommend disabling OpLocks at file write 

caching level to address inconsistencies; Async protocols for WAN 

performance utilizing hidden queues; Mutex implementations using queues;

Itanium's failure for compiler-handled concurrency; Erlang parallelism 

used in WhatsApp being limited by queue memory; asynchronous circuits 

being limited by memory of the queue (analogous to queue is different 

here); concurrency handling issues in Domain Specific Languages; 

inevitability to increase out-of-order queue size in practice for 

superscalar processor designs; queuing limits in real applications with 

GPU programming, and the list can go on and on.

"As far as the laws of mathematics refer to reality, they are not 

certain; and as far as they are certain, they do not refer to reality" -

Einstein

Humbly request utile real-world examples only to challenge my views.

Question 2:

Could you please provide evidence of the functionality and effectiveness

of goal-oriented selection using machine learning? I appreciate any 

context or resources you can provide, such as the article available at 

https://ncbi.nlm.nih.gov/pmc/articles/PMC4186236/

In all modesty, the complexity of the second question goes beyond this 

relatively short format. To summarize consider this evolution:

Skinner's work with pigeons and boxes, James Olds' rat experiments with 

those boxes, and the discovery of extraordinary pleasure centers that 

override basic animal instincts; triggering of unethical human brain 

experiments thereafter prompting a comprehensive ban; the 2000 Nobel 

Prize-winning discovery of non-invasive brain study techniques 

https://ncbi.nlm.nih.gov/pmc/articles/PMC4186236/


rekindling interest in brain research; resulting 2003 'BRAIN Initiative'

and the concurrent rise of machine learning.

Many traditional Indian philosophers have deliberated on goal-oriented 

selection, opening up another complex discussion layer.

Solution:

Modern computers heavily rely on extensive optimizations at all levels 

to ensure usability. Systematic optimization is crucial to sustain 

progress and avoid issues like the problem of ending strings with zero, 

which persists across various levels of computing 

(https://queue.acm.org/detail.cfm?id=2010365). Notably, a grammar rule 

in Sanskrit prohibits statements from ending with zero or "sunya". 

Although run-length encoding is used in software and hardware as a 

solution these days in various contexts, the foundational problems and 

solutions are better explained in Sanskrit grammar. 

By leveraging Sanskrit, we harness time-tested optimizations ingrained 

in the grammar itself, derived from the few foundational Maheswara 

sutras.

A time line of formal computer language grammars:

https://jeffreykegler.github.io/personal/timeline_v3

Utilizing Panini's Sanskrit grammar rules and mimansa, I believe it is 

possible to construct a hardware processor and directly employ Sanskrit 

as a programming language. This approach facilitates the creation of a 

supercomputing system that excels in all aspects.

Building upon existing research, my humble approach expands and enhances

the context of Sanskrit in computer applications. I aim to demonstrate 

the following: In mimansa, there is a well-known situation where a 

servant, invited by a non-friend of the master (mother as per some 

texts) during an ongoing lawsuit, encounters the person on the road. The

master then cryptically says, "eat the poison and die," meaning they 

intend to change the servant's mind. Traditional computers, regardless 

of model or programming, cannot guarantee reaching this conclusion. 

However, with Sanskrit, we can confidently arrive at the precise 

conclusion, demonstrating the steps on paper in a concise manner.

Importantly, all necessary texts on these subjects remain intact and 

available to this day, showcasing their enduring value over time. 

Specifically, Sanskrit's "Viswamitra rule" solves "inception vs 

perception" and the implications exceed common understanding.

https://jeffreykegler.github.io/personal/timeline_v3
https://queue.acm.org/detail.cfm?id=2010365


Notes:

1. The omission of Alan Turing's interpretation is due to the intricate 

discussion on Mimansa (particularly Uttara Mimansa) his interpretation 

would necessitate. Given the challenge of simplifying Mimansa, I've 

respectfully sidestepped it.

2. The connection between physics and computer science becomes more 

apparent when examining the field of regex indexing.

3. Envision an operator like '*' that signifies combining of wave and 

particle nature when applied to numbers resulting in, 2 * 3 = 1. This 

might seem unconventional, yet I can validate it. I've encountered at 

least four pieces of work that reference this in the most enigmatic way 

conceivable.

Ref:

- <deleted in current version; details will be provided under NDA>

- <deleted in current version; details will be provided under NDA >

- <deleted in current version; details will be provided under NDA>

- Panini's grammar

As I delve deeper, these findings will undoubtedly lead to unprecedented

insights about numbers that likely surpass any current imaginations. 

It's worth noting that this exploration will inevitably touch upon the 

realm of cryptography. 

Epilogue:

There are way many things and what we touched is not even the tip of the

iceberg. Each concept itself requires a book for general audience. But 

for those - well versed with any one of these 3: halting problem, 

quantum algebra, Sanskrit grammar - I am sure the understanding has come

by now. Sanskrit grammar is all about wave-particle interplay. Thanks.

Revision History:

2019Aug17: Initial version

2025Jul26: Current version 

2025Nov29: Added a line on run-length encoding, link to time line of 

grammar, epilogue.


