Halting Problem & Sanskrit Based On-board Supercomputer

"Inception vs perception" problem (solved in Sanskrit grammar), end of
1850s' black body radiation problem (still unsolved actually) and 1950s'
halting problem are the same.

Halting problem can, 1in practice, be understood by:
- the failure to avoid queue 1in parallelism
- the dinability of goal-oriented selection using machine learning

This affects quantum computers also.
Details:

The role of black body radiation studies in the end of 1850s drove
progress in modern physics, due to initial difficulties in explaining
the observed phenomena.

The Heisenberg Uncertainty Principle, which states that one cannot
accurately measure both the position and speed of a particle
simultaneously, has led to conventional quantum theories like the
(1960s’ version of) “S-matrix bootstrap theory" with still unsolved
equations.

John Von Neumann, the physicist who made significant contributions to
computer architecture and programming, offered key insights into the
Halting Problem.

This problem, along with other aspects of quantum physics (as per Von
Neumann, Weber, and others), is a part of several open-ended questions—
even relating to consciousness.

Quantum computers aim to address the perfect parallelism from a unique
perspective, but they also face limitations rooted in this problem.

I offer to summarize the disputed and unproven aspects of quantum
computers in both theory and application as follows:

1. Hadrons, as self-creating particles, present challenges, and
conclusions on the data from the Large Hadron Collider (LHC) are
debatable. Quarks and Gluons do not exist as per different theories and
the indirect proofs being given for these particles can be explained
using different theories also, not just the most popular one.

2. Existing practical applications like laser technology and quantum
cryptography rely on 'conventional' quantum physics, despite unsolvable
equations.



My 1intention of following questions is to stimulate thought and
encourage contemplation.

Question 1:

I humbly request to see if there is any practical example of a parallel
program, language, or software/hardware architecture that operates
efficiently without relying on (algorithmic) queue. The utilization of
queue imposes Llimitations on system parallelism and also demonstrates
shortcomings in the algorithm.

For 1st question, examine these:

Bitcoin's no-queue causing reliability 1issue; Uber-like apps' billing
delays due to queuing; Memory limits in queue causing message loss 1in
message queues; Databases recommend disabling OpLocks at file write
caching level to address inconsistencies; Async protocols for WAN
performance utilizing hidden queues; Mutex implementations using queues;
Itanium's failure for compiler-handled concurrency; Erlang parallelism
used in WhatsApp being limited by queue memory; asynchronous circuits
being limited by memory of the queue (analogous to queue is different
here); concurrency handling issues in Domain Specific Languages;
inevitability to increase out-of-order queue size in practice for
superscalar processor designs; queuing limits in real applications with
GPU programming, and the list can go on and on.

"As far as the laws of mathematics refer to reality, they are not
certain; and as far as they are certain, they do not refer to reality" -
Einstein

Humbly request utile real-world examples only to challenge my views.
Question 2:

Could you please provide evidence of the functionality and effectiveness
of goal-oriented selection using machine learning? I appreciate any

context or resources you can provide, such as the article available at
https://ncbi.nlm.nih.gov/pmc/articles/PMC4186236/

In all modesty, the complexity of the second question goes beyond this
relatively short format. To summarize consider this evolution:

Skinner's work with pigeons and boxes, James Olds' rat experiments with
those boxes, and the discovery of extraordinary pleasure centers that
override basic animal instincts; triggering of unethical human brain
experiments thereafter prompting a comprehensive ban; the 2000 Nobel
Prize-winning discovery of non-invasive brain study techniques


https://ncbi.nlm.nih.gov/pmc/articles/PMC4186236/

rekindling interest in brain research; resulting 2003 'BRAIN Initiative'
and the concurrent rise of machine learning.

Many traditional Indian philosophers have deliberated on goal-oriented
selection, opening up another complex discussion layer.

Solution:

Modern computers heavily rely on extensive optimizations at all levels
to ensure usability. Systematic optimization 1is crucial to sustain
progress and avoid issues like the problem of ending strings with zero,
which persists across various levels of computing
(https://queue.acm.org/detail.cfm?2id=2010365). Notably, a grammar rule
in Sanskrit prohibits statements from ending with zero or "sunya'".
Although run-length encoding is used in software and hardware as a
solution these days in various contexts, the foundational problems and
solutions are better explained in Sanskrit grammar.

By leveraging Sanskrit, we harness time-tested optimizations ingrained
in the grammar itself, derived from the few foundational Maheswara
sutras.

A time line of formal computer language grammars:
https://jeffreykegler.github.io/personal/timeline v3

Utilizing Panini's Sanskrit grammar rules and mimansa, I believe it is
possible to construct a hardware processor and directly employ Sanskrit
as a programming language. This approach facilitates the creation of a
supercomputing system that excels in all aspects.

Building upon existing research, my humble approach expands and enhances
the context of Sanskrit in computer applications. I aim to demonstrate
the following: In mimansa, there 1is a well-known situation where a
servant, invited by a non-friend of the master (mother as per some
texts) during an ongoing lawsuit, encounters the person on the road. The
master then cryptically says, "eat the poison and die," meaning they
intend to change the servant's mind. Traditional computers, regardless
of model or programming, cannot guarantee reaching this conclusion.
However, with Sanskrit, we can confidently arrive at the precise
conclusion, demonstrating the steps on paper in a concise manner.

Importantly, all necessary texts on these subjects remain intact and
available to this day, showcasing their enduring value over time.
Specifically, Sanskrit's "Viswamitra rule" solves "inception vs
perception" and the implications exceed common understanding.


https://jeffreykegler.github.io/personal/timeline_v3
https://queue.acm.org/detail.cfm?id=2010365

Notes:

1. The omission of Alan Turing's interpretation 1is due to the 1intricate
discussion on Mimansa (particularly Uttara Mimansa) his interpretation
would necessitate. Given the challenge of simplifying Mimansa, I've
respectfully sidestepped 1it.

2. The connection between physics and computer science becomes more
apparent when examining the field of regex indexing.

3. Envision an operator like 'x' that signifies combining of wave and
particle nature when applied to numbers resulting in, 2 * 3 = 1. This
might seem unconventional, yet I can validate it. I've encountered at
least four pieces of work that reference this in the most enigmatic way
conceivable.

Ref:

- <deleted 1in current version; details will be provided under NDA>

- <deleted 1in current version; details will be provided under NDA >

- <deleted in current version; details will be provided under NDA>

- Panini's grammar

As I delve deeper, these findings will undoubtedly lead to unprecedented
insights about numbers that likely surpass any current imaginations.
It's worth noting that this exploration will inevitably touch upon the
realm of cryptography.

Epilogue:

There are way many things and what we touched is not even the tip of the
iceberg. Each concept itself requires a book for general audience. But
for those - well versed with any one of these 3: halting problem,
quantum algebra, Sanskrit grammar - I am sure the understanding has come
by now. Sanskrit grammar is all about wave-particle 1interplay. Thanks.

Revision History:

2019Augl7: Initial version

2025Jul26: Current version

2025Nov29: Added a line on run-length encoding, link to time line of
grammar, epilogue.




